MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C68400 Brass

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 500
540
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 940
130
Melting Completion (Liquidus), °C 1430
840
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 21
66
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
87
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
99

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 33
47
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.6
21
Thermal Shock Resistance, points 17
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
59 to 64
Iron (Fe), % 72.9 to 82
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0.2 to 1.5
Nickel (Ni), % 0 to 2.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0 to 1.5
1.5 to 2.5
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5