MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C82000 Copper

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 500
350 to 690
Tensile Strength: Yield (Proof), MPa 230
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 940
220
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
260
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
46

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.3
5.0
Embodied Energy, MJ/kg 33
77
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
11 to 22
Strength to Weight: Bending, points 18
12 to 20
Thermal Diffusivity, mm2/s 5.6
76
Thermal Shock Resistance, points 17
12 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 1.2
95.2 to 97.4
Iron (Fe), % 72.9 to 82
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 2.0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5