MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C82700 Copper

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 500
1200
Tensile Strength: Yield (Proof), MPa 230
1020

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 940
300
Melting Completion (Liquidus), °C 1430
950
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
21

Otherwise Unclassified Properties

Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.3
12
Embodied Energy, MJ/kg 33
180
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
4260
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
38
Strength to Weight: Bending, points 18
29
Thermal Diffusivity, mm2/s 5.6
39
Thermal Shock Resistance, points 17
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0 to 0.090
Copper (Cu), % 0 to 1.2
94.6 to 96.7
Iron (Fe), % 72.9 to 82
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 2.0
1.0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5