MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C86100 Bronze

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C86100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C86100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 500
660
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 21
35
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.9
Embodied Energy, MJ/kg 33
49
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
530
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 5.6
10
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
4.5 to 5.5
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
66 to 68
Iron (Fe), % 72.9 to 82
2.0 to 4.0
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
17.3 to 25