MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C94800 Bronze

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C94800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 500
310
Tensile Strength: Yield (Proof), MPa 230
160

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
190
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 21
39
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.3
3.5
Embodied Energy, MJ/kg 33
56
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
9.8
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 5.6
12
Thermal Shock Resistance, points 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
84 to 89
Iron (Fe), % 72.9 to 82
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 0 to 2.0
4.5 to 6.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3