MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C96600 Copper

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
52
Tensile Strength: Ultimate (UTS), MPa 500
760
Tensile Strength: Yield (Proof), MPa 230
480

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 940
280
Melting Completion (Liquidus), °C 1430
1180
Melting Onset (Solidus), °C 1380
1100
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.3
7.0
Embodied Energy, MJ/kg 33
100
Embodied Water, L/kg 130
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
830
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 5.6
8.4
Thermal Shock Resistance, points 17
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
63.5 to 69.8
Iron (Fe), % 72.9 to 82
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 2.0
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5