MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. Grade C-5 Titanium

ACI-ASTM CB6 steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
6.7
Fatigue Strength, MPa 410
510
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 880
1000
Tensile Strength: Yield (Proof), MPa 660
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 870
340
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1390
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 17
7.1
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 2.5
38
Embodied Energy, MJ/kg 36
610
Embodied Water, L/kg 130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
66
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 32
63
Strength to Weight: Bending, points 26
50
Thermal Diffusivity, mm2/s 4.6
2.9
Thermal Shock Resistance, points 31
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 15.5 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 74.4 to 81
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4