MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. C66300 Brass

ACI-ASTM CB6 steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 880
460 to 810
Tensile Strength: Yield (Proof), MPa 660
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1390
1000
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
110
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
26

Otherwise Unclassified Properties

Base Metal Price, % relative 12
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
46
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
15 to 26
Strength to Weight: Bending, points 26
15 to 22
Thermal Diffusivity, mm2/s 4.6
32
Thermal Shock Resistance, points 31
16 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 74.4 to 81
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5