MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. C68400 Brass

ACI-ASTM CB6 steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 880
540
Tensile Strength: Yield (Proof), MPa 660
310

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 870
130
Melting Completion (Liquidus), °C 1440
840
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
66
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.5
2.7
Embodied Energy, MJ/kg 36
47
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
81
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 4.6
21
Thermal Shock Resistance, points 31
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 74.4 to 81
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0.2 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.5
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5