MakeItFrom.com
Menu (ESC)

ACI-ASTM CB6 Steel vs. C71520 Copper-nickel

ACI-ASTM CB6 steel belongs to the iron alloys classification, while C71520 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB6 steel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 18
10 to 45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
51
Tensile Strength: Ultimate (UTS), MPa 880
370 to 570
Tensile Strength: Yield (Proof), MPa 660
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 870
260
Melting Completion (Liquidus), °C 1440
1170
Melting Onset (Solidus), °C 1390
1120
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
32
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.5
5.0
Embodied Energy, MJ/kg 36
73
Embodied Water, L/kg 130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
12 to 18
Strength to Weight: Bending, points 26
13 to 17
Thermal Diffusivity, mm2/s 4.6
8.9
Thermal Shock Resistance, points 31
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0 to 0.050
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 74.4 to 81
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 5.5
28 to 33
Phosphorus (P), % 0 to 0.040
0 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5