MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. 5456 Aluminum

ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while 5456 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 5.7 to 11
11 to 18
Fatigue Strength, MPa 420 to 590
130 to 210
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
320 to 340
Tensile Strength: Yield (Proof), MPa 760 to 1180
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1500
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
97

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.6
9.0
Embodied Energy, MJ/kg 38
150
Embodied Water, L/kg 130
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
170 to 470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 34 to 48
33 to 35
Strength to Weight: Bending, points 28 to 35
38 to 40
Thermal Diffusivity, mm2/s 4.6
48
Thermal Shock Resistance, points 32 to 45
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
92 to 94.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15.5 to 17.7
0.050 to 0.2
Copper (Cu), % 2.5 to 3.2
0 to 0.1
Iron (Fe), % 72.3 to 78.4
0 to 0.4
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 0.7
0.5 to 1.0
Nickel (Ni), % 3.6 to 4.6
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15