MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. C26000 Brass

ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while C26000 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is C26000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 11
2.5 to 66
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
320 to 680
Tensile Strength: Yield (Proof), MPa 760 to 1180
110 to 570

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Melting Completion (Liquidus), °C 1430
950
Melting Onset (Solidus), °C 1500
920
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 13
25
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 38
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
6.1 to 420
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
51 to 1490
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 48
11 to 23
Strength to Weight: Bending, points 28 to 35
13 to 21
Thermal Diffusivity, mm2/s 4.6
38
Thermal Shock Resistance, points 32 to 45
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Bismuth (Bi), % 0
0 to 0.0059
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15.5 to 17.7
0
Copper (Cu), % 2.5 to 3.2
68.5 to 71.5
Iron (Fe), % 72.3 to 78.4
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 3.6 to 4.6
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
28.1 to 31.5
Residuals, % 0
0 to 0.3