MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-1 Steel vs. C48600 Brass

ACI-ASTM CB7Cu-1 steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB7Cu-1 steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 5.7 to 11
20 to 25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
280 to 360
Tensile Strength: Yield (Proof), MPa 760 to 1180
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1500
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
110
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
28

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
47
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 1500 to 3590
61 to 140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 48
9.5 to 12
Strength to Weight: Bending, points 28 to 35
12 to 14
Thermal Diffusivity, mm2/s 4.6
36
Thermal Shock Resistance, points 32 to 45
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15.5 to 17.7
0
Copper (Cu), % 2.5 to 3.2
59 to 62
Iron (Fe), % 72.3 to 78.4
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 3.6 to 4.6
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4