MakeItFrom.com
Menu (ESC)

ACI-ASTM CB7Cu-2 Steel vs. 6005A Aluminum

ACI-ASTM CB7Cu-2 steel belongs to the iron alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB7Cu-2 steel and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 5.7 to 11
8.6 to 17
Fatigue Strength, MPa 420 to 590
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 960 to 1350
190 to 300
Tensile Strength: Yield (Proof), MPa 760 to 1180
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 17
180 to 190
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 38
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 1510 to 3600
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 34 to 48
20 to 30
Strength to Weight: Bending, points 28 to 35
27 to 36
Thermal Diffusivity, mm2/s 4.6
72 to 79
Thermal Shock Resistance, points 32 to 45
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0 to 0.3
Copper (Cu), % 2.5 to 3.2
0 to 0.3
Iron (Fe), % 73.6 to 79
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 0.7
0 to 0.5
Nickel (Ni), % 4.5 to 5.5
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15