MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MCuN Steel vs. C95410 Bronze

ACI-ASTM CD3MCuN steel belongs to the iron alloys classification, while C95410 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MCuN steel and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 29
9.1 to 13
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
43
Tensile Strength: Ultimate (UTS), MPa 790
620 to 740
Tensile Strength: Yield (Proof), MPa 500
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1440
1040
Melting Onset (Solidus), °C 1390
1030
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
59
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 20
28
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.9
3.3
Embodied Energy, MJ/kg 54
54
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 620
280 to 630
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28
21 to 25
Strength to Weight: Bending, points 24
20 to 22
Thermal Diffusivity, mm2/s 4.1
16
Thermal Shock Resistance, points 22
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26.7
0
Copper (Cu), % 1.4 to 1.9
83 to 85.5
Iron (Fe), % 58.2 to 65.9
3.0 to 5.0
Manganese (Mn), % 0 to 1.2
0 to 0.5
Molybdenum (Mo), % 2.9 to 3.8
0
Nickel (Ni), % 5.6 to 6.7
1.5 to 2.5
Nitrogen (N), % 0.22 to 0.33
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.1
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5