MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MN Steel vs. EN 1.8893 Steel

Both ACI-ASTM CD3MN steel and EN 1.8893 steel are iron alloys. They have 69% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MN steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
16
Fatigue Strength, MPa 340
470
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 710
830
Tensile Strength: Yield (Proof), MPa 460
720

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1060
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.7
Embodied Energy, MJ/kg 50
23
Embodied Water, L/kg 160
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 530
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 20
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 21 to 23.5
0 to 0.3
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 62.6 to 71.9
95.6 to 98
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 2.5 to 3.5
0.3 to 0.45
Nickel (Ni), % 4.5 to 6.5
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.1 to 0.3
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12