MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. EN 1.7338 Steel

Both ACI-ASTM CD3MWCuN steel and EN 1.7338 steel are iron alloys. Both are furnished in the normalized and tempered condition. They have 64% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is EN 1.7338 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
23
Fatigue Strength, MPa 370
220
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 790
490
Tensile Strength: Yield (Proof), MPa 500
300

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
430
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
3.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
1.6
Embodied Energy, MJ/kg 58
21
Embodied Water, L/kg 180
53

Common Calculations

PREN (Pitting Resistance) 42
3.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
97
Resilience: Unit (Modulus of Resilience), kJ/m3 620
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 22
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 24 to 26
1.0 to 1.5
Copper (Cu), % 0.5 to 1.0
0 to 0.3
Iron (Fe), % 56.6 to 65.3
95.4 to 97.8
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 3.0 to 4.0
0.45 to 0.65
Nickel (Ni), % 6.5 to 8.5
0 to 0.3
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 1.0
0.5 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.010
Tungsten (W), % 0.5 to 1.0
0