MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. EN 1.8935 Steel

Both ACI-ASTM CD3MWCuN steel and EN 1.8935 steel are iron alloys. They have 63% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is EN 1.8935 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
19
Fatigue Strength, MPa 370
330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 790
640
Tensile Strength: Yield (Proof), MPa 500
490

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
1.7
Embodied Energy, MJ/kg 58
24
Embodied Water, L/kg 180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 620
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.2
12
Thermal Shock Resistance, points 22
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 24 to 26
0 to 0.3
Copper (Cu), % 0.5 to 1.0
0 to 0.7
Iron (Fe), % 56.6 to 65.3
95.2 to 98.9
Manganese (Mn), % 0 to 1.5
1.1 to 1.7
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.1
Nickel (Ni), % 6.5 to 8.5
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.2 to 0.3
0 to 0.025
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 0.5 to 1.0
0
Vanadium (V), % 0
0 to 0.2