MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. Grade 9 Titanium

ACI-ASTM CD3MWCuN steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
11 to 17
Fatigue Strength, MPa 370
330 to 480
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 790
700 to 960
Tensile Strength: Yield (Proof), MPa 500
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1410
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 16
8.1
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 22
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 4.2
36
Embodied Energy, MJ/kg 58
580
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 620
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
43 to 60
Strength to Weight: Bending, points 24
39 to 48
Thermal Diffusivity, mm2/s 4.2
3.3
Thermal Shock Resistance, points 22
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 56.6 to 65.3
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.5
0
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.6 to 95.5
Tungsten (W), % 0.5 to 1.0
0
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4