MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. C43000 Brass

ACI-ASTM CD3MWCuN steel belongs to the iron alloys classification, while C43000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
3.0 to 55
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 790
320 to 710
Tensile Strength: Yield (Proof), MPa 500
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.2
2.8
Embodied Energy, MJ/kg 58
46
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 620
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
10 to 23
Strength to Weight: Bending, points 24
12 to 20
Thermal Diffusivity, mm2/s 4.2
36
Thermal Shock Resistance, points 22
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
84 to 87
Iron (Fe), % 56.6 to 65.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.7 to 2.7
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5