MakeItFrom.com
Menu (ESC)

ACI-ASTM CD3MWCuN Steel vs. C84400 Valve Metal

ACI-ASTM CD3MWCuN steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CD3MWCuN steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 29
19
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
39
Tensile Strength: Ultimate (UTS), MPa 790
230
Tensile Strength: Yield (Proof), MPa 500
110

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 4.2
2.8
Embodied Energy, MJ/kg 58
46
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
36
Resilience: Unit (Modulus of Resilience), kJ/m3 620
58
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
7.2
Strength to Weight: Bending, points 24
9.4
Thermal Diffusivity, mm2/s 4.2
22
Thermal Shock Resistance, points 22
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
78 to 82
Iron (Fe), % 56.6 to 65.3
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.5
0 to 1.0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Tungsten (W), % 0.5 to 1.0
0
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7