MakeItFrom.com
Menu (ESC)

ACI-ASTM CE8MN Steel vs. C64200 Bronze

ACI-ASTM CE8MN steel belongs to the iron alloys classification, while C64200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CE8MN steel and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
14 to 35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 750
540 to 640
Tensile Strength: Yield (Proof), MPa 500
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
980
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 16
45
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.2
3.0
Embodied Energy, MJ/kg 58
50
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 620
240 to 470
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
18 to 21
Strength to Weight: Bending, points 23
18 to 20
Thermal Diffusivity, mm2/s 4.2
13
Thermal Shock Resistance, points 21
20 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 22.5 to 25.5
0
Copper (Cu), % 0
88.2 to 92.2
Iron (Fe), % 56 to 66.4
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 3.0 to 4.5
0
Nickel (Ni), % 8.0 to 11
0 to 0.25
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
1.5 to 2.2
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5