MakeItFrom.com
Menu (ESC)

ACI-ASTM CF10SMnN Steel vs. 7129 Aluminum

ACI-ASTM CF10SMnN steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CF10SMnN steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 34
9.0 to 9.1
Fatigue Strength, MPa 260
150 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 660
430
Tensile Strength: Yield (Proof), MPa 330
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 340
380
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1360
630
Melting Onset (Solidus), °C 1310
510
Specific Heat Capacity, J/kg-K 500
880
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.5
2.9
Embodied Carbon, kg CO2/kg material 3.1
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 280
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
47
Strength to Weight: Axial, points 24
41
Strength to Weight: Bending, points 22
43 to 44
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 16 to 18
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 59.1 to 65.4
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 7.0 to 9.0
0 to 0.1
Nickel (Ni), % 8.0 to 9.0
0
Nitrogen (N), % 0.080 to 0.18
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 3.5 to 4.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15