MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. C81400 Copper

ACI-ASTM CF20 steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 50
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 530
370
Tensile Strength: Yield (Proof), MPa 250
250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 970
200
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
61

Otherwise Unclassified Properties

Base Metal Price, % relative 16
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
36
Resilience: Unit (Modulus of Resilience), kJ/m3 160
260
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
11
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 4.3
75
Thermal Shock Resistance, points 11
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 18 to 21
0.6 to 1.0
Copper (Cu), % 0
98.4 to 99.38
Iron (Fe), % 64.2 to 74
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 8.0 to 11
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5