MakeItFrom.com
Menu (ESC)

ACI-ASTM CF20 Steel vs. S39277 Stainless Steel

Both ACI-ASTM CF20 steel and S39277 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF20 steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
28
Fatigue Strength, MPa 240
480
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Tensile Strength: Ultimate (UTS), MPa 530
930
Tensile Strength: Yield (Proof), MPa 250
660

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 970
1100
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
4.2
Embodied Energy, MJ/kg 44
59
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 20
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
240
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
33
Strength to Weight: Bending, points 19
27
Thermal Diffusivity, mm2/s 4.3
4.2
Thermal Shock Resistance, points 11
26

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.025
Chromium (Cr), % 18 to 21
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 64.2 to 74
56.8 to 64.3
Manganese (Mn), % 0 to 1.5
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 8.0 to 11
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2