MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3M Steel vs. S30415 Stainless Steel

Both ACI-ASTM CF3M steel and S30415 stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3M steel and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 55
45
Fatigue Strength, MPa 270
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 520
670
Tensile Strength: Yield (Proof), MPa 260
330

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
420
Maximum Temperature: Mechanical, °C 990
940
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1430
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.8
3.1
Embodied Energy, MJ/kg 53
43
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 27
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
250
Resilience: Unit (Modulus of Resilience), kJ/m3 170
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 4.3
5.6
Thermal Shock Resistance, points 12
15

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 17 to 21
18 to 19
Iron (Fe), % 59.9 to 72
67.8 to 71.8
Manganese (Mn), % 0 to 1.5
0 to 0.8
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
9.0 to 10
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.5
1.0 to 2.0
Sulfur (S), % 0 to 0.040
0 to 0.030