MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. EN 1.4869 Casting Alloy

ACI-ASTM CF3MN steel belongs to the iron alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. They have 49% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 39
5.7
Fatigue Strength, MPa 250
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
80
Tensile Strength: Ultimate (UTS), MPa 580
540
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1010
1200
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 15
10
Thermal Expansion, µm/m-K 16
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
70
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.9
7.7
Embodied Energy, MJ/kg 53
110
Embodied Water, L/kg 160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
26
Resilience: Unit (Modulus of Resilience), kJ/m3 210
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 4.1
2.6
Thermal Shock Resistance, points 13
14

Alloy Composition

Carbon (C), % 0 to 0.030
0.45 to 0.55
Chromium (Cr), % 17 to 22
24 to 26
Cobalt (Co), % 0
14 to 16
Iron (Fe), % 58.7 to 71.9
11.4 to 23.6
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
33 to 37
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
1.0 to 2.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0