MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. C41500 Brass

ACI-ASTM CF3MN steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 580
340 to 560
Tensile Strength: Yield (Proof), MPa 290
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
29

Otherwise Unclassified Properties

Base Metal Price, % relative 19
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.9
2.8
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
11 to 18
Strength to Weight: Bending, points 20
12 to 17
Thermal Diffusivity, mm2/s 4.1
37
Thermal Shock Resistance, points 13
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 22
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 58.7 to 71.9
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5