MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. C46200 Brass

ACI-ASTM CF3MN steel belongs to the iron alloys classification, while C46200 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 39
17 to 34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 580
370 to 480
Tensile Strength: Yield (Proof), MPa 290
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1440
840
Melting Onset (Solidus), °C 1390
800
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
20

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 53
46
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 210
72 to 400
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
13 to 16
Strength to Weight: Bending, points 20
14 to 17
Thermal Diffusivity, mm2/s 4.1
35
Thermal Shock Resistance, points 13
12 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 22
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 58.7 to 71.9
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4