MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8 Steel vs. EN 1.7361 Steel

Both ACI-ASTM CF8 steel and EN 1.7361 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8 steel and the bottom bar is EN 1.7361 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
300
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 55
11
Fatigue Strength, MPa 260
480
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Tensile Strength: Ultimate (UTS), MPa 540
1010
Tensile Strength: Yield (Proof), MPa 260
780

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 980
470
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
41
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
3.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.7
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 150
60

Common Calculations

PREN (Pitting Resistance) 20
4.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
36
Strength to Weight: Bending, points 19
29
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 13
29

Alloy Composition

Carbon (C), % 0 to 0.080
0.28 to 0.35
Chromium (Cr), % 18 to 21
2.8 to 3.3
Iron (Fe), % 63.8 to 74
94.1 to 96.2
Manganese (Mn), % 0 to 1.5
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.5
Nickel (Ni), % 8.0 to 11
0 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.040
0 to 0.035