MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8C Steel vs. C19000 Copper

ACI-ASTM CF8C steel belongs to the iron alloys classification, while C19000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8C steel and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
2.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 530
260 to 760
Tensile Strength: Yield (Proof), MPa 260
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
250
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
61

Otherwise Unclassified Properties

Base Metal Price, % relative 19
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
42
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
89 to 1730
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
8.2 to 24
Strength to Weight: Bending, points 19
10 to 21
Thermal Diffusivity, mm2/s 4.3
73
Thermal Shock Resistance, points 11
9.3 to 27

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
96.9 to 99
Iron (Fe), % 61.8 to 73
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 9.0 to 12
0.9 to 1.3
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.15 to 0.35
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5