MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. EN 1.0487 Steel

Both ACI-ASTM CG3M steel and EN 1.0487 steel are iron alloys. They have 66% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is EN 1.0487 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
130
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
27
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 580
440
Tensile Strength: Yield (Proof), MPa 270
280

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1020
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.5
Embodied Energy, MJ/kg 56
20
Embodied Water, L/kg 160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 18 to 21
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 58.9 to 70
96.6 to 99.38
Manganese (Mn), % 0 to 1.5
0.6 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.080
Nickel (Ni), % 9.0 to 13
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.5
0 to 0.4
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050