MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. CC494K Bronze

ACI-ASTM CG3M steel belongs to the iron alloys classification, while CC494K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
67
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
7.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 580
210
Tensile Strength: Yield (Proof), MPa 270
94

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1450
970
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 15
63
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
16

Otherwise Unclassified Properties

Base Metal Price, % relative 20
31
Density, g/cm3 7.9
9.1
Embodied Carbon, kg CO2/kg material 4.1
3.1
Embodied Energy, MJ/kg 56
50
Embodied Water, L/kg 160
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
13
Resilience: Unit (Modulus of Resilience), kJ/m3 190
43
Stiffness to Weight: Axial, points 14
6.4
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 20
6.5
Strength to Weight: Bending, points 20
8.8
Thermal Diffusivity, mm2/s 4.1
19
Thermal Shock Resistance, points 13
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
78 to 87
Iron (Fe), % 58.9 to 70
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 9.0 to 13
0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 1.5
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0