MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. C95700 Bronze

ACI-ASTM CG3M steel belongs to the iron alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 28
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
47
Tensile Strength: Ultimate (UTS), MPa 580
680
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1020
220
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
950
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
26
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.1
3.3
Embodied Energy, MJ/kg 56
54
Embodied Water, L/kg 160
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 4.1
3.3
Thermal Shock Resistance, points 13
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
7.0 to 8.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
71 to 78.5
Iron (Fe), % 58.9 to 70
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.5
11 to 14
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 9.0 to 13
1.5 to 3.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.1
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5