MakeItFrom.com
Menu (ESC)

ACI-ASTM CG6MMN Steel vs. C61000 Bronze

ACI-ASTM CG6MMN steel belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 670
390 to 460
Tensile Strength: Yield (Proof), MPa 320
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1080
210
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 480
420
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 4.8
3.0
Embodied Energy, MJ/kg 68
49
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 260
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
13 to 15
Strength to Weight: Bending, points 22
14 to 16
Thermal Shock Resistance, points 14
14 to 16

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
90.2 to 94
Iron (Fe), % 51.9 to 62.1
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5