MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C64200 Bronze

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C64200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C64200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
14 to 35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 610
540 to 640
Tensile Strength: Yield (Proof), MPa 350
230 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1410
1000
Melting Onset (Solidus), °C 1430
980
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 14
45
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.7
3.0
Embodied Energy, MJ/kg 53
50
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
73 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 300
240 to 470
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
18 to 21
Strength to Weight: Bending, points 21
18 to 20
Thermal Diffusivity, mm2/s 3.7
13
Thermal Shock Resistance, points 15
20 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.3 to 7.6
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
88.2 to 92.2
Iron (Fe), % 54.7 to 66
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
1.5 to 2.2
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5