MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C67600 Bronze

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C67600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 38
13 to 33
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 610
430 to 570
Tensile Strength: Yield (Proof), MPa 350
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1410
890
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
27

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 300
140 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
15 to 20
Strength to Weight: Bending, points 21
16 to 19
Thermal Diffusivity, mm2/s 3.7
35
Thermal Shock Resistance, points 15
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 54.7 to 66
0.4 to 1.3
Lead (Pb), % 0
0.5 to 1.0
Manganese (Mn), % 0 to 1.5
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.2 to 41.6
Residuals, % 0
0 to 0.5