MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C72200 Copper-nickel

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C72200 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C72200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
48
Tensile Strength: Ultimate (UTS), MPa 610
350 to 580

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1410
1180
Melting Onset (Solidus), °C 1430
1120
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
34
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
6.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.7
3.9
Embodied Energy, MJ/kg 53
59
Embodied Water, L/kg 180
300

Common Calculations

Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
11 to 18
Strength to Weight: Bending, points 21
12 to 17
Thermal Diffusivity, mm2/s 3.7
9.6
Thermal Shock Resistance, points 15
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0.3 to 0.7
Copper (Cu), % 0
78.1 to 84.2
Iron (Fe), % 54.7 to 66
0.5 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
15 to 18
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.2