MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C96800 Copper

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 38
3.4
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
46
Tensile Strength: Ultimate (UTS), MPa 610
1010
Tensile Strength: Yield (Proof), MPa 350
860

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1410
1120
Melting Onset (Solidus), °C 1430
1060
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 14
52
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 20
34
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 53
52
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
33
Resilience: Unit (Modulus of Resilience), kJ/m3 300
3000
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 3.7
15
Thermal Shock Resistance, points 15
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
87.1 to 90.5
Iron (Fe), % 54.7 to 66
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0 to 1.5
0.050 to 0.3
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
9.5 to 10.5
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5