MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. R30155 Cobalt

Both ACI-ASTM CH20 steel and R30155 cobalt are iron alloys. They have 67% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 38
34
Fatigue Strength, MPa 290
310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
81
Tensile Strength: Ultimate (UTS), MPa 610
850
Tensile Strength: Yield (Proof), MPa 350
390

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 440
570
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1410
1470
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 14
12
Thermal Expansion, µm/m-K 15
14

Otherwise Unclassified Properties

Base Metal Price, % relative 20
80
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.7
9.7
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 180
300

Common Calculations

PREN (Pitting Resistance) 25
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
230
Resilience: Unit (Modulus of Resilience), kJ/m3 300
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 3.7
3.2
Thermal Shock Resistance, points 15
21

Alloy Composition

Carbon (C), % 0 to 0.2
0.080 to 0.16
Chromium (Cr), % 22 to 26
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Iron (Fe), % 54.7 to 66
24.3 to 36.2
Manganese (Mn), % 0 to 1.5
1.0 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.5 to 3.5
Nickel (Ni), % 12 to 15
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0