MakeItFrom.com
Menu (ESC)

ACI-ASTM CK20 Steel vs. EN 1.8891 Steel

Both ACI-ASTM CK20 steel and EN 1.8891 steel are iron alloys. They have 54% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK20 steel and the bottom bar is EN 1.8891 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 37
19
Fatigue Strength, MPa 220
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 530
610
Tensile Strength: Yield (Proof), MPa 260
480

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
46
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
1.7
Embodied Energy, MJ/kg 62
24
Embodied Water, L/kg 190
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 3.7
12
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 23 to 27
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 46.7 to 58
95.2 to 99
Manganese (Mn), % 0 to 2.0
1.0 to 1.7
Molybdenum (Mo), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 19 to 22
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2