MakeItFrom.com
Menu (ESC)

ACI-ASTM CK35MN Steel vs. C67500 Bronze

ACI-ASTM CK35MN steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK35MN steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 650
430 to 580
Tensile Strength: Yield (Proof), MPa 310
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
110
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
27

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.9
2.8
Embodied Energy, MJ/kg 81
47
Embodied Water, L/kg 210
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 240
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
15 to 20
Strength to Weight: Bending, points 21
16 to 19
Thermal Diffusivity, mm2/s 3.3
34
Thermal Shock Resistance, points 14
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0 to 0.4
57 to 60
Iron (Fe), % 43.4 to 51.8
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Molybdenum (Mo), % 6.0 to 6.8
0
Nickel (Ni), % 20 to 22
0
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5