MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3MN Steel vs. EN AC-43100 Aluminum

ACI-ASTM CN3MN steel belongs to the iron alloys classification, while EN AC-43100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN3MN steel and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
60 to 94
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 39
1.1 to 2.5
Fatigue Strength, MPa 250
68 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 620
180 to 270
Tensile Strength: Yield (Proof), MPa 300
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
130

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 6.2
7.8
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 200
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 210
66 to 360
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 21
20 to 29
Strength to Weight: Bending, points 20
28 to 36
Thermal Diffusivity, mm2/s 3.4
60
Thermal Shock Resistance, points 14
8.6 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
86.9 to 90.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 41.4 to 50.3
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.45
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0 to 0.050
Nitrogen (N), % 0.18 to 0.26
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 11
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15