MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3MN Steel vs. C51100 Bronze

ACI-ASTM CN3MN steel belongs to the iron alloys classification, while C51100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN3MN steel and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 39
2.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 620
330 to 720
Tensile Strength: Yield (Proof), MPa 300
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 13
84
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
20

Otherwise Unclassified Properties

Base Metal Price, % relative 33
32
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.2
3.0
Embodied Energy, MJ/kg 84
48
Embodied Water, L/kg 200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 210
38 to 2170
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
10 to 22
Strength to Weight: Bending, points 20
12 to 20
Thermal Diffusivity, mm2/s 3.4
25
Thermal Shock Resistance, points 14
12 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0 to 0.75
93.8 to 96.5
Iron (Fe), % 41.4 to 50.3
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 23.5 to 25.5
0
Nitrogen (N), % 0.18 to 0.26
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
3.5 to 4.9
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5