MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 7076 Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
6.2
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 540
530
Tensile Strength: Yield (Proof), MPa 230
460

Thermal Properties

Latent Heat of Fusion, J/g 340
380
Maximum Temperature: Mechanical, °C 1040
170
Melting Completion (Liquidus), °C 1400
630
Melting Onset (Solidus), °C 1350
460
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 5.1
8.0
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
31
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 19
49
Strength to Weight: Bending, points 19
48
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 13
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 1.5 to 2.0
0.3 to 1.0
Iron (Fe), % 45.4 to 53.5
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15