MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. EN 1.4901 Stainless Steel

Both AISI 201 stainless steel and EN 1.4901 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.6 to 51
19
Fatigue Strength, MPa 280 to 600
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 450 to 840
460
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
740
Tensile Strength: Yield (Proof), MPa 300 to 1080
490

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 880
650
Melting Completion (Liquidus), °C 1410
1490
Melting Onset (Solidus), °C 1370
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
40
Embodied Water, L/kg 140
89

Common Calculations

PREN (Pitting Resistance) 19
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23 to 52
26
Strength to Weight: Bending, points 22 to 37
23
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 14 to 32
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.15
0.070 to 0.13
Chromium (Cr), % 16 to 18
8.5 to 9.5
Iron (Fe), % 67.5 to 75
85.8 to 89.1
Manganese (Mn), % 5.5 to 7.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 3.5 to 5.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0 to 0.25
0.030 to 0.070
Phosphorus (P), % 0 to 0.060
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010