MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. Grade 33 Titanium

AISI 201 stainless steel belongs to the iron alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.6 to 51
23
Fatigue Strength, MPa 280 to 600
250
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 450 to 840
240
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
390
Tensile Strength: Yield (Proof), MPa 300 to 1080
350

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 880
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1370
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
33
Embodied Energy, MJ/kg 38
530
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
86
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23 to 52
24
Strength to Weight: Bending, points 22 to 37
26
Thermal Diffusivity, mm2/s 4.0
8.7
Thermal Shock Resistance, points 14 to 32
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 16 to 18
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 67.5 to 75
0 to 0.3
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0.35 to 0.55
Nitrogen (N), % 0 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.060
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.1 to 99.52
Residuals, % 0
0 to 0.4