MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. C85200 Brass

AISI 201L stainless steel belongs to the iron alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 46
28
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
270
Tensile Strength: Yield (Proof), MPa 290 to 790
95

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 880
140
Melting Completion (Liquidus), °C 1410
940
Melting Onset (Solidus), °C 1370
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
84
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
19

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
59
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
42
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27 to 37
8.9
Strength to Weight: Bending, points 24 to 30
11
Thermal Diffusivity, mm2/s 4.0
27
Thermal Shock Resistance, points 16 to 23
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
70 to 74
Iron (Fe), % 67.9 to 75
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Zinc (Zn), % 0
20 to 27
Residuals, % 0
0 to 0.9