MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. C93200 Bronze

AISI 201L stainless steel belongs to the iron alloys classification, while C93200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is C93200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 22 to 46
20
Fatigue Strength, MPa 270 to 530
110
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
38
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
240
Tensile Strength: Yield (Proof), MPa 290 to 790
130

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 880
160
Melting Completion (Liquidus), °C 1410
980
Melting Onset (Solidus), °C 1370
850
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 15
59
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 38
52
Embodied Water, L/kg 140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
40
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
76
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 37
7.5
Strength to Weight: Bending, points 24 to 30
9.7
Thermal Diffusivity, mm2/s 4.0
18
Thermal Shock Resistance, points 16 to 23
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
81 to 85
Iron (Fe), % 67.9 to 75
0 to 0.2
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Zinc (Zn), % 0
2.0 to 4.0
Residuals, % 0
0 to 1.0