MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. S13800 Stainless Steel

Both AISI 201L stainless steel and S13800 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 320
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22 to 46
11 to 18
Fatigue Strength, MPa 270 to 530
410 to 870
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 520 to 660
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
980 to 1730
Tensile Strength: Yield (Proof), MPa 290 to 790
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 410
390
Maximum Temperature: Mechanical, °C 880
810
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 19
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
1090 to 5490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27 to 37
35 to 61
Strength to Weight: Bending, points 24 to 30
28 to 41
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 16 to 23
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 16 to 18
12.3 to 13.2
Iron (Fe), % 67.9 to 75
73.6 to 77.3
Manganese (Mn), % 5.5 to 7.5
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 3.5 to 5.5
7.5 to 8.5
Nitrogen (N), % 0 to 0.25
0 to 0.010
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.0080